题目内容
1:24
1:24
.分析:由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值.
解答:解:因为D,E,分别是AB,AC的中点,所以S△ADE:S△ABC=1:4,
又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.
即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍.
所以V1:V2=
=
=1:24.
故答案为1:24.
又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.
即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍.
所以V1:V2=
| ||
| S△ABC•H |
| 1 |
| 24 |
故答案为1:24.
点评:本题考查了棱柱和棱锥的体积公式,考查了相似多边形的面积的比等于相似比的平方,是基础的计算题.
练习册系列答案
相关题目