题目内容

已知随机变量ξ服从正态分布,且方程x2+2x+ξ=0有实数解的概率为
1
2
,若P(ξ≤2)=0.8,则P(0≤ξ≤2)=(  )
A、0.6B、0.4
C、0.8D、0.2
分析:根据随机变量ξ服从正态分布,且方程x2+2x+ξ=0有实数解的概率为
1
2
,知正态曲线的对称轴是x=1,欲求P(0≤ξ≤2),只须依据正态分布对称性,即可求得答案.
解答:精英家教网解:∵方程x2+2x+ξ=0有实数解的概率为
1
2

∴P(△≥0)=
1
2

即P(ξ≥1)=
1
2

故正态曲线的对称轴是:x=1,如图
∵P(ξ≤2)=0.8,
∴P(ξ≤0)=0.2,
∴P(0≤ξ≤2)=1-(0.2+0.2)=0.6.
故选A.
点评:本小题主要考查正态分布曲线的特点及曲线所表示的意义、概率的基本性质、方程有解的条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网