ÌâÄ¿ÄÚÈÝ
20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ3¦Ñcos¦È+2¦Ñsin¦È=12£¬ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬MΪÇúÏßCÓëyÖḺ°ëÖáµÄ½»µã£¬ÔòËıßÐÎCMABµÄÃæ»ýΪ6+4$\sqrt{3}$£®·ÖÎö Ê×ÏȰÑÇúÏߵIJÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔٰѼ«×ø±ê·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬½øÒ»²½Çó³ö${S}_{¡÷OAB}=\frac{1}{2}•\sqrt{13}\frac{12}{\sqrt{13}}=6$ºÍ${S}_{¡÷AOM}=\frac{1}{2}•4•2\sqrt{3}=4\sqrt{3}$£¬×îºóÇó³öËıßÐεÄÃæ»ý£®
½â´ð ½â£ºÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cost}\\{y=2\sqrt{3}sint}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£¬
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ3¦Ñcos¦È+2¦Ñsin¦È=12£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º3x+2y-12=0£®
ËùÒÔ£º$\left\{\begin{array}{l}\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1\\ 3x+2y-12=0\end{array}\right.$£¬
½âµÃ£ºA£¨4£¬0£©£¬B£¨2£¬3£©£¬
ËùÒÔ£º|AB|=$\sqrt{13}$£¬
µãOµ½Ö±ÏßABµÄ¾àÀëΪ£ºd=$\frac{12}{\sqrt{13}}$£¬
ËùÒÔ£º${S}_{¡÷OAB}=\frac{1}{2}•\sqrt{13}\frac{12}{\sqrt{13}}=6$£¬
${S}_{¡÷AOM}=\frac{1}{2}•4•2\sqrt{3}=4\sqrt{3}$£¬
SËıßÐÎOMAB=S¡÷OAB+S¡÷AOM=6+4$\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Á½µã¼äµÄ¾àÀ빫ʽ£¬µãµ½Ö±Ïß¾àÀ빫ʽµÄÓ¦Ó㬼°Ïà¹ØµÄÔËËãÎÊÌ⣮
| A£® | x=$\frac{¦Ð}{4}$ | B£® | x=-$\frac{¦Ð}{4}$ | C£® | x=$\frac{¦Ð}{8}$ | D£® | x=-$\frac{¦Ð}{8}$ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{7¦Ð}{6}$ | D£® | $\frac{7¦Ð}{12}$ |
| A£® | 8 | B£® | 6 | C£® | 4 | D£® | 2 |