题目内容
已知数列{an}满足a1=1,点(an•an+1)在直线y=2x+1上,数列{bn}满足b1=a1,| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
(1)求bn+1an-(bn+1)an+1的值;
(2)求证:(1+b1)(1+b2)•…•(1+bn)<
| 10 |
| 3 |
分析:(1)把点(an•an+1)代入直线方程求得数列的递推式,整理得an+1+1=2(an+1),判断出{an+1}是以2为首项,2为公比的等比数列,进而根据等比数列的通项公式求得an.同时根据
=
+
+••+
(n≥2)求得
=
+
+••+
+
,进而判断出
=
+
整理得bn+1an-(bn+1)an+1=0,进而看当n=1时b2a1-(b1+1)a2=-3.,综合可得答案.
(2)根据(1)可知
=
(n≥2)进而求得(1+
)(1+
)••(1+
)=2(
+
+…+
),先看当k≥2时求得
-
=
<
,进而可知(1+
)(1+
)••(1+bn)<
b1b2••bn.进而再看n=1时不等式也成立.原式得证.
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
(2)根据(1)可知
| bn+1 |
| bn+1 |
| an |
| an+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| ak |
| 1 |
| 2k-1 |
| 2k+1-1 |
| (2k-1)(2k+1-1) |
| 2k+1 |
| (2k-1)(2k+1-1) |
| 1 |
| b1 |
| 1 |
| b2 |
| 10 |
| 3 |
解答:解:(1)∵点(an,an+1)在直线y=2x+1上,∴an+1=2an+1∴an+1+1=2(an+1),
即(an+1)是以2为首项,2为公比的等比数列∴an=2n-1
又
=
+
+…+
(n≥2)
∴
=
+
+…+
+
∴
=
+
∴bn+1an-(bn+1)an+1=0(n≥2)
当n=1时,b1=a1=1,b2=a2=3
则b2a1-(b1+1)a2=-3.
(2)由(1)知
=
(n≥2),b2=a2
∴(1+
)(1+
)••(1+
)=
•
••
=
•
•
••
•
•bn+1=
•
•
•
••
•
•bn+1=2•
=2(
+
+…+
).
∵k≥2时,
-
=
<
=2(
-
)
∴
+
+…+
=1+
+••+
<1+2[(
-
)+••+(
-
)]=1+2(
-
)<
∴(1+
)(1+
)••(1+bn)<
b1b2••bn.
另证:当n≥2时2n-2≥1(仅当n=2取等号)
∴2n-1≥3•2n-2,即
-
≤
•
(n≥2)
∴当n≥2时,
+
+…+
≤1+
(1+
+…+
)=1+
•
=
-
<
而n=1显然成立
∴(1+
)(1+
)••(1+
)<
即(1+b1)(1+b2)••(1+bn)<
b1b2••bn.
即(an+1)是以2为首项,2为公比的等比数列∴an=2n-1
又
| bn |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
∴
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
∴
| bn+1 |
| an+1 |
| bn |
| an |
| 1 |
| an |
∴bn+1an-(bn+1)an+1=0(n≥2)
当n=1时,b1=a1=1,b2=a2=3
则b2a1-(b1+1)a2=-3.
(2)由(1)知
| bn+1 |
| bn+1 |
| an |
| an+1 |
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| b1+1 |
| b1 |
| b2+1 |
| b2 |
| bn+1 |
| bn |
| 1 |
| b1 |
| b1+1 |
| b2 |
| b2+1 |
| b3 |
| bn-1 |
| bn |
| bn+1 |
| bn+1 |
| 1 |
| b1 |
| b1+1 |
| b2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an-1 |
| an |
| an |
| an+1 |
| bn+1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
∵k≥2时,
| 1 |
| ak |
| 1 |
| 2k-1 |
| 2k+1-1 |
| (2k-1)(2k+1-1) |
| 2k+1 |
| (2k-1)(2k+1-1) |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 3 |
| 1 |
| 2n+1-1 |
| 5 |
| 3 |
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 10 |
| 3 |
另证:当n≥2时2n-2≥1(仅当n=2取等号)
∴2n-1≥3•2n-2,即
| 1 |
| an |
| 1 |
| 2n-1 |
| 1 |
| 3 |
| 1 |
| 2n-2 |
∴当n≥2时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2n-2 |
| 1 |
| 3 |
1-
| ||
1-
|
| 5 |
| 3 |
| 1 |
| 2n-2 |
| 5 |
| 3 |
而n=1显然成立
∴(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 10 |
| 3 |
即(1+b1)(1+b2)••(1+bn)<
| 10 |
| 3 |
点评:本题主要考查了不等式和数列的综合,数列通项公式的确定,考查了学生综合运用不等式和数列知识解决问题的能力.
练习册系列答案
相关题目