题目内容

已知数列{an}满足a1=1,点(an•an+1)在直线y=2x+1上,数列{bn}满足b1=a1
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2).

(1)求bn+1an-(bn+1)an+1的值;
(2)求证:(1+b1)(1+b2)•…•(1+bn)<
10
3
b1b2•…•bn(n∈Nh*).
分析:(1)把点(an•an+1)代入直线方程求得数列的递推式,整理得an+1+1=2(an+1),判断出{an+1}是以2为首项,2为公比的等比数列,进而根据等比数列的通项公式求得an.同时根据
bn
an
=
1
a1
+
1
a2
+••+
1
an-1
(n≥2)
求得
bn+1
an+1
=
1
a1
+
1
a2
+••+
1
an-1
+
1
an
,进而判断出
bn+1
an+1
=
bn
an
+
1
an
整理得bn+1an-(bn+1)an+1=0,进而看当n=1时b2a1-(b1+1)a2=-3.,综合可得答案.
(2)根据(1)可知
bn+1
bn+1
=
an
an+1
(n≥2)
进而求得(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)
=2(
1
a1
+
1
a2
+…+
1
an
)
,先看当k≥2时求得
1
ak
-
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
,进而可知(1+
1
b1
)(1+
1
b2
)••(1+bn)<
10
3
b1b2••bn.
进而再看n=1时不等式也成立.原式得证.
解答:解:(1)∵点(an,an+1)在直线y=2x+1上,∴an+1=2an+1∴an+1+1=2(an+1),
即(an+1)是以2为首项,2为公比的等比数列∴an=2n-1
bn
an
=
1
a1
+
1
a2
+…+
1
an-1
(n≥2)

bn+1
an+1
=
1
a1
+
1
a2
+…+
1
an-1
+
1
an

bn+1
an+1
=
bn
an
+
1
an

∴bn+1an-(bn+1)an+1=0(n≥2)
当n=1时,b1=a1=1,b2=a2=3
则b2a1-(b1+1)a2=-3.

(2)由(1)知
bn+1
bn+1
=
an
an+1
(n≥2),b2=a2

(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)=
b1+1
b1
b2+1
b2
••
bn+1
bn
=
1
b1
b1+1
b2
b2+1
b3
••
bn-1
bn
bn+1
bn+1
bn+1=
1
b1
b1+1
b2
a2
a3
a3
a4
an-1
an
an
an+1
bn+1=2•
bn+1
an+1
=2(
1
a1
+
1
a2
+…+
1
an
)

∵k≥2时,
1
ak
-
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
)

1
a1
+
1
a2
+…+
1
an
=1+
1
3
+••+
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+
••+(
1
2n-1
-
1
2n+1-1
)]=1+2(
1
3
-
1
2n+1-1
)<
5
3

(1+
1
b1
)(1+
1
b2
)••(1+bn)<
10
3
b1b2••bn.

另证:当n≥2时2n-2≥1(仅当n=2取等号)
∴2n-1≥3•2n-2,即
1
an
-
1
2n-1
1
3
1
2n-2
(n≥2)

∴当n≥2时,
1
a1
+
1
a2
+…+
1
an
≤1+
1
3
(1+
1
2
+…+
1
2n-2
)=1+
1
3
1-
1
2n-1
1-
1
2
=
5
3
-
1
2n-2
5
3

而n=1显然成立
(1+
1
b1
)(1+
1
b2
)••(1+
1
bn
)<
10
3

(1+b1)(1+b2)••(1+bn)<
10
3
b1b2••bn.
点评:本题主要考查了不等式和数列的综合,数列通项公式的确定,考查了学生综合运用不等式和数列知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网