题目内容
已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
分析:根据奇函数f(x)在定义域(-1,1)上单调递减,我们可将不等式f(a-2)+f(6-3a)<0化为
,解不等式可得答案.
|
解答:解:∵奇函数f(x)在定义域(-1,1)上单调递减,
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)
即
解得:
<a<2
故实数a的取值范围
<a<2
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)
即
|
解得:
| 5 |
| 3 |
故实数a的取值范围
| 5 |
| 3 |
点评:本题是函数单调性和函数奇偶性的综合应用,其中利用函数的性质将原不等式化为不等式组是解答的关键,本题易忽略函数的定义域而错解为a<2
练习册系列答案
相关题目
已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有( )
| A、f(sinα-sinβ)≥f(cosα-cosβ) | B、f(sinα-cosβ)>f(cosα-sinβ) | C、f(sinα-cosβ)≥f(cosα-sinβ) | D、f(sinα-cosβ)<f(cosα-sinβ) |