题目内容
已知数列{an} 满足:a1=1,a2=
,,且an+2=
(n∈N*).
(Ⅰ)求证:数列{
}为等差数列;
(Ⅱ)求数列{an} 的通项公式;
(Ⅲ)求下表中前n行所有数的和Sn
…
… …
.
| 1 |
| 2 |
| an+12 |
| an+an+1 |
(Ⅰ)求证:数列{
| an |
| an+1 |
(Ⅱ)求数列{an} 的通项公式;
(Ⅲ)求下表中前n行所有数的和Sn
| a1a1 |
| a2 |
| a1a2 |
| a3 |
| a2a1 |
| a3 |
…
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
分析:(Ⅰ)由条件a1=1,a2=
,an+2=
(n∈N*),得
=
.所以
-
= 1,由此能够证明数列{
}为等差数列.
(Ⅱ)由
=
+(n-1)•1=n+1,知
=
•
…
=2×3×…×n=n!,由此能求出an=
.
(Ⅲ)由
=
,(k=1,2,3,…,n),知第n行各数之和
+
+…+
=2n+1-2.由此能求出表中前n行所有数的和Sn.
| 1 |
| 2 |
| an+12 |
| an+an+1 |
| an+2 |
| an+1 |
| an+1 |
| an+an+1 |
| an+1 |
| an+2 |
| an |
| an+1 |
| an |
| an+1 |
(Ⅱ)由
| an |
| an+1 |
| a1 |
| a2 |
| a1 |
| an |
| a1 |
| a2 |
| a2 |
| a3 |
| an-1 |
| an |
| 1 |
| n! |
(Ⅲ)由
| akan-k+1 |
| an+1 |
| (n+1)! |
| k!(n-k+1)! |
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
解答:解:(Ⅰ)由条件a1=1,a2=
,an+2=
(n∈N*),
得
=
.
∴
-
= 1,
∴数列{
}为等差数列.
(Ⅱ)由(Ⅰ)得
=
+(n-1)•1=n+1,
∴
=
•
…
=2×3×…×n=n!,
∴an=
.…(8分)
(Ⅲ)∵
=
,(k=1,2,3,…,n) …(10分)
∴第n行各数之和
+
+…+
=Cn+11+Cn+21+…+Cn+1n
=2n+1-2.
∴表中前n行所有数的和
Sn=(22-2)+(23-2)+…+(2n+1-2)
=(22+23+…+2n+1)-2n
=
-2n
=2n+2-2n-4.(n=1,2,…)…(12分)
| 1 |
| 2 |
| an+12 |
| an+an+1 |
得
| an+2 |
| an+1 |
| an+1 |
| an+an+1 |
∴
| an+1 |
| an+2 |
| an |
| an+1 |
∴数列{
| an |
| an+1 |
(Ⅱ)由(Ⅰ)得
| an |
| an+1 |
| a1 |
| a2 |
∴
| a1 |
| an |
| a1 |
| a2 |
| a2 |
| a3 |
| an-1 |
| an |
∴an=
| 1 |
| n! |
(Ⅲ)∵
| akan-k+1 |
| an+1 |
| (n+1)! |
| k!(n-k+1)! |
∴第n行各数之和
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
=Cn+11+Cn+21+…+Cn+1n
=2n+1-2.
∴表中前n行所有数的和
Sn=(22-2)+(23-2)+…+(2n+1-2)
=(22+23+…+2n+1)-2n
=
| 22(2n-1) |
| 2-1 |
=2n+2-2n-4.(n=1,2,…)…(12分)
点评:本题考查等差数列的证明和数列驼项公式的求法和求数列的前n项和.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目