题目内容
已知函数f(x)=
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N*.
(Ⅰ)求数列{an}的通项an;(Ⅱ)若bn=
+1,对任意正整数n,不等式
-
≤0恒成立,求正数k的取值范围.
(Ⅲ)求证:
+
+
+…+
<
.
| x |
| x+1 |
(Ⅰ)求数列{an}的通项an;(Ⅱ)若bn=
| 2 |
| an |
| kn+1 | ||||||||
(1+
|
| kn | ||
|
(Ⅲ)求证:
| a | 2 1 |
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 33 |
| 20 |
分析:(Ⅰ)根据an+1=f(an)得an+1=
?
-
=1,则数列{
}是以1为首项,1为公差的等差数列,可求数列{
}是的通项,从而求出所求;
(Ⅱ)根据bn=
+1⇒bn=2n+1,将k分离出来得k≤
(1+
)(1+
)(1+
)…(1+
),记g(n)=
(1+
)(1+
)(1+
)…(1+
),根据
>1得到g(n)在n∈N*上递增,可求出正数k的取值范围.
(Ⅲ)根据
<
=
=
-
,代入可得结论.
| an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)根据bn=
| 2 |
| an |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| g(n+1) |
| g(n) |
(Ⅲ)根据
| 1 |
| n2 |
| 1 | ||
n2-
|
| 1 | ||||
(n-
|
| 1 | ||
n-
|
| 1 | ||
n+
|
解答:(Ⅰ)解:由题意an+1=f(an)?an+1=
?
-
=1,
∴数列{
}是以1为首项,1为公差的等差数列. …(2分)
∴
=n,即an=
. …(4分)
(Ⅱ)证明:由bn=
+1⇒bn=2n+1,
-
≤0
即k≤
(1+
)(1+
)(1+
)…(1+
)…(6分)
记g(n)=
(1+
)(1+
)(1+
)…(1+
)g(n+1)=
(1+
)(1+
)(1+
)…(1+
)(1+
)
则
=
(1+
)=
•
=
=
>1,
∴g(n+1)>g(n),即g(n)在n∈N*上递增,
g(n)min=g(1)=
,∴k∈(0,
].…(8分)
(Ⅲ)证明:∵
<
=
=
-
∴
+
+
+…+
<1+
+
-
+
-
+…+
-
=1+
+
-
<
. …(12分)
| an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| n |
(Ⅱ)证明:由bn=
| 2 |
| an |
| kn+1 | ||||||||
(1+
|
| kn | ||
|
即k≤
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
记g(n)=
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| 1 |
| bn+1 |
则
| g(n+1) |
| g(n) |
| ||
|
| 1 |
| bn+1 |
| ||
|
| 2n+4 |
| 2n+3 |
| 2n+4 | ||||
|
| ||
|
∴g(n+1)>g(n),即g(n)在n∈N*上递增,
g(n)min=g(1)=
4
| ||
| 15 |
4
| ||
| 15 |
(Ⅲ)证明:∵
| 1 |
| n2 |
| 1 | ||
n2-
|
| 1 | ||||
(n-
|
| 1 | ||
n-
|
| 1 | ||
n+
|
∴
| a | 2 1 |
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 1 |
| 4 |
| 1 | ||
3-
|
| 1 | ||
3+
|
| 1 | ||
4-
|
| 1 | ||
4+
|
| 1 | ||
n-
|
| 1 | ||
n+
|
=1+
| 1 |
| 4 |
| 2 |
| 5 |
| 2 |
| 2n+1 |
| 33 |
| 20 |
点评:本题主要考查了数列与不等式的综合,以及等差数列的判定和数列的函数特性,同时考查了计算能力和转化的数学思想,属于难题.
练习册系列答案
相关题目