题目内容

已知函数f(x)=
x
x+1
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N*
(Ⅰ)求数列{an}的通项an;(Ⅱ)若bn=
2
an
+1
,对任意正整数n,不等式
kn+1
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
-
kn
2+bn
≤0
恒成立,求正数k的取值范围.
(Ⅲ)求证:
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
33
20
分析:(Ⅰ)根据an+1=f(an)得an+1=
an
an+1
?
1
an+1
-
1
an
=1
,则数列{
1
an
}
是以1为首项,1为公差的等差数列,可求数列{
1
an
}
是的通项,从而求出所求;
(Ⅱ)根据bn=
2
an
+1⇒bn=2n+1
,将k分离出来得k≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
,记g(n)=
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
,根据
g(n+1)
g(n)
>1得到g(n)在n∈N*上递增,可求出正数k的取值范围.
(Ⅲ)根据
1
n2
1
n2-
1
4
=
1
(n-
1
2
)(n+
1
2
)
=
1
n-
1
2
-
1
n+
1
2
,代入可得结论.
解答:(Ⅰ)解:由题意an+1=f(an)?an+1=
an
an+1
?
1
an+1
-
1
an
=1

∴数列{
1
an
}
是以1为首项,1为公差的等差数列.           …(2分)
1
an
=n
,即an=
1
n
.                                 …(4分)
(Ⅱ)证明:由bn=
2
an
+1⇒bn=2n+1

kn+1
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
-
kn
2+bn
≤0

k≤
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
…(6分)
g(n)=
1
2n+3
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)
g(n+1)=
1
2n+5
(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)(1+
1
bn+1
)

g(n+1)
g(n)
=
2n+3
2n+5
(1+
1
bn+1
)=
2n+3
2n+5
2n+4
2n+3
=
2n+4
2n+5
2n+3
=
4n2+16n+16
4n2+16n+15
>1

∴g(n+1)>g(n),即g(n)在n∈N*上递增,
g(n)min=g(1)=
4
5
15
,∴k∈(0,
4
5
15
]
.…(8分)
(Ⅲ)证明:∵
1
n2
1
n2-
1
4
=
1
(n-
1
2
)(n+
1
2
)
=
1
n-
1
2
-
1
n+
1
2

a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
<1+
1
4
+
1
3-
1
2
-
1
3+
1
2
+
1
4-
1
2
-
1
4+
1
2
+…+
1
n-
1
2
-
1
n+
1
2

=1+
1
4
+
2
5
-
2
2n+1
33
20
.            …(12分)
点评:本题主要考查了数列与不等式的综合,以及等差数列的判定和数列的函数特性,同时考查了计算能力和转化的数学思想,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网