题目内容

已知定义在R上的函数f(x),满足条件:①f(x)+f(-x)=2,②对非零实数x,都有2f(x)+f(
1
x
)=2x+
1
x
+3

(1)求函数f(x)的解析式;
(2)设函数g(x)=
f2(x)-2x
  (x≥0)
,直线y=
2
 n-x
与函数y=g(x)交于An,又Bn为An关于直线y=x的对称点,(其中n∈N*),求|AnBn|;
(3)设an=|AnBn|,Sn为数列{an}的前n项和,求证:当n≥2时,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)
分析:(1)当x≠0时,由2f(x)+f(
1
x
)=2x+
1
x
+3
,可得2f(
1
x
)+f(x)=
2
x
+x+3
,两式联立,即可得函数f(x)的解析式;
(2)由(1)得g(x)=
x2+1
,直线y=
2
 n-x
与函数y=g(x)联立,求出An、Bn的坐标,从而可求|AnBn|;
(3)由(2)知an=|AnBn|=
1
n
,利用Sn-
1
n
=Sn-1
,可得当n≥2时,Sn2-Sn-12=
2Sn
n
-
1
n2
,累加得:Sn2=2(
S2
2
+
S3
3
+…+
Sn
n
)+1-(
1
22
+
1
32
+…+
1
n2
)
,从而可证结论.
解答:解:(1)当x≠0时,2f(x)+f(
1
x
)=2x+
1
x
+3
,故 2f(
1
x
)+f(x)=
2
x
+x+3

两式联立可得,f(x)=x+1(x≠0)
又当x=0时,有f(0)=1,∴f(x)=x+1;
(2)由(1)得g(x)=
x2+1
,直线y=
2
 n-x
与函数y=g(x)联立可得
y=
2
n-x
g(x)=
x2+1

An(
2n2-1
2
2
n
2n2+1
2
2
n
)

由此可得Bn(
2n2+1
2
2
n
2n2-1
2
2
n
)

所以,|AnBn|=
(
2n2-1
2
2
n
-
2n2+1
2
2
n
)
2
+(
2n2+1
2
2
n
-
2n2-1
2
2
n
)
2
=
1
n

(3)由(2)知an=|AnBn|=
1
n

Sn-
1
n
=Sn-1
,∴Sn-12=Sn2-
2Sn
n
+
1
n2

∴当n≥2时,Sn2-Sn-12=
2Sn
n
-
1
n2
Sn-12-Sn-22=
2Sn-1
n-1
-
1
(n-1)2
,…,S22-S12=
2S2
2
-
1
22

累加得:Sn2=2(
S2
2
+
S3
3
+…+
Sn
n
)+1-(
1
22
+
1
32
+…+
1
n2
)

又∵1-(
1
22
+
1
32
+…+
1
n2
)
>1-[
1
1×2
+
1
2×3
+…+
1
n(n-1)
]
=1-(1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
)
=
1
n
>0

Sn2>2(
S2
2
+
S3
3
+…+
Sn
n
)
点评:本题考查函数的解析式,考查两点间的距离,考查不等式的证明,解题的关键是确定点的坐标,叠加法研究数列的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网