题目内容
在等差数列{an}中,Sn为{an}的前n项和,Sn=
n2+
n.n∈N*
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=nan(n∈N*),求数列{
}的前n项和Tn.
| 1 |
| 2 |
| 3 |
| 2 |
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=nan(n∈N*),求数列{
| 1 |
| bn |
分析:(Ⅰ)利用递推公式可得当n=1时,a1=S1=
+
=2当n≥2时当n≥2时,an=Sn-Sn-1
(Ⅱ)由(I)可得bn=n(n+1),从而可得
=
=
-
,故考虑利用裂项求和可求
| 1 |
| 2 |
| 3 |
| 2 |
(Ⅱ)由(I)可得bn=n(n+1),从而可得
| 1 |
| bn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(Ⅰ)当n=1时,a1=S1=
+
=2(1分)
当n≥2时,an=Sn-Sn-1=
n2+
n-[
(n-1)2+
(n-1)]=n+1(3分)
检验n=1时,a1=2,符合上式.(4分)
则an=n+1(n∈N*).(5分)
(Ⅱ)因为bn=nan(n∈N*),
所以bn=n(n+1).(6分)
=
=
-
(8分)
Tn=
1+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
所以数列{
}的前n项和Tn=
(n∈N*).(12分)
| 1 |
| 2 |
| 3 |
| 2 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
检验n=1时,a1=2,符合上式.(4分)
则an=n+1(n∈N*).(5分)
(Ⅱ)因为bn=nan(n∈N*),
所以bn=n(n+1).(6分)
| 1 |
| bn |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Tn=
| 1 |
| b |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
所以数列{
| 1 |
| bn |
| n |
| n+1 |
点评:本题主要考查了利用数列的递推公式n≥2时,an=Sn-Sn-1.求解数列的通项公式,数列求和的裂项求和,考查了基本运算的能力
练习册系列答案
相关题目