题目内容

在等差数列{an}中,a1=3,前n项和Sn满足条件
Sn+2
Sn
=
n+4
n
,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
1
Sn
,数列{bn}的前n项和为Tn,求Tn
(1)设等差数列{an}的公差为d,
Sn+2
Sn
=
n+4
n
对一切正自然数n都成立可知,
当n=1时,得:
S3
S1
=
3a1+3d
a1
=5
,又a1=3,所以d=2,
所以an=3+2(n-1)=2n+1.
(2)由(Ⅰ)知等差数列{an}的前n项和Sn=
n(3+2n+1)
2
=n(n+2)
bn=
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=b1+b2+…+bn
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网