题目内容

已知函数f(x)=
2x+a
2x+1
,且函数f(x)为奇函数.
(Ⅰ)求a的值;
(Ⅱ)若f(x)<
1
2
,求x的取值范围;
(Ⅲ)证明f(x)在(-∞,+∞)上为增函数.
分析:(Ⅰ)由函数为奇函数得到f(-x)=-f(x),建立关于x的恒等式,利用系数为0即可得a的范围.
(Ⅱ)代入f(x)的解析式,然后化为整式不等式得到2x<3,从而解得x的范围.
(Ⅲ)先设自变量值任取x1、x2∈(-∞,+∞)且x1<x2,然后通过作差比较f(x1)与f(x2)的大小,即得函数的单调性.
解答:解:(Ⅰ)∵f(-x)=-f(x),即
2-x+a
2-x+1
+
2x+a
2x+1
=0,
1+a•2x
2x+1
+
2x+a
2x+1
=0?(a+1)(2x+1)=0?a=-1

(Ⅱ)∵
2x-1
2x+1
1
2
?2(2x-1)<2x
+1,
∴2x<3,∴x<log23
(Ⅲ)任取x1、x2∈(-∞,+∞)且x1<x2
f(x1)-f(x2)=
2x1-1
2x1+1
-
2x2-1
2x2+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵y'=2x在R上为增函数,x1<x2∴2X1<2X2又∵2X1+1>0,2X2+1>0
∴f(x1)-f(x2)<0即∴f(x)在R上为增函数.
点评:本题考查了函数奇偶性的性质,函数单调性的判断与证明及解不等式,定义是解决问题的根本,是个中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网