题目内容
已知函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,F(x)=f (x)+1,则F(x)最大值与最小值之和为( )A.1
B.2
C.3
D.0
【答案】分析:由已知中函数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,我们可以判断f(-A),f(A),进而求出F(x)的最大值与最小值,进而求出答案.
解答:解:∵函数数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,
则函数的最大值和最小值,分别为f(-A),f(A),
又∵F(x)=f (x)+1,
∴F(x)最大值与最小值分别为f(-A)+1,f(A)+1,
∴F(x)最大值与最小值之和为2
故选B
点评:本题考查的知识点是奇偶函数图象的对称性,其中根据奇函数的性质,判断出函数f (x)在闭区间[-a,a](a>0)上的最大值与最小值互为相反数是解答本题的关键.
解答:解:∵函数数f (x)是定义在闭区间[-a,a](a>0)上的奇函数,
则函数的最大值和最小值,分别为f(-A),f(A),
又∵F(x)=f (x)+1,
∴F(x)最大值与最小值分别为f(-A)+1,f(A)+1,
∴F(x)最大值与最小值之和为2
故选B
点评:本题考查的知识点是奇偶函数图象的对称性,其中根据奇函数的性质,判断出函数f (x)在闭区间[-a,a](a>0)上的最大值与最小值互为相反数是解答本题的关键.
练习册系列答案
相关题目