题目内容

已知数列{an}的前n项和是Sn,且Sn+
1
2
an=1(n∈N+)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
1
3
(1-Sn+1)(n∈N+)
,令Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求Tn
(Ⅰ)当n=1时,a1=S1,由S1+
1
2
a1=a1+
1
2
a1=1
,得:a1=
2
3

当n≥2时,Sn=1-
1
2
anSn-1=1-
1
2
an-1

Sn-Sn-1=
1
2
(an-1-an)
,即an=
1
2
(an-1-an)

所以an=
1
3
an-1(n≥2)

a1=
2
3
≠0
,∴
an
an-1
=
1
3

故数列{an}是以
2
3
为首项,
1
3
为公比的等比数列.
an=a1qn-1=
2
3
•(
1
3
)n-1=2•(
1
3
)n
(n∈N*).
(Ⅱ)∵Sn+
1
2
an=1
,∴1-Sn=
1
2
an

bn=log
1
3
(1-Sn+1)=log
1
3
(
1
3
)n+1=n+1

1
bnbn+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

所以,Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)
=
1
2
-
1
n+2
=
n
2(n+2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网