题目内容
已知数列{an}的前n项和是Sn,且Sn+
an=1(n∈N+)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
(1-Sn+1)(n∈N+),令Tn=
+
+…+
,求Tn.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
| 1 |
| 3 |
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
(Ⅰ)当n=1时,a1=S1,由S1+
a1=a1+
a1=1,得:a1=
.
当n≥2时,Sn=1-
an,Sn-1=1-
an-1.
则Sn-Sn-1=
(an-1-an),即an=
(an-1-an),
所以an=
an-1(n≥2).
∵a1=
≠0,∴
=
.
故数列{an}是以
为首项,
为公比的等比数列.
故an=a1qn-1=
•(
)n-1=2•(
)n(n∈N*).
(Ⅱ)∵Sn+
an=1,∴1-Sn=
an.
∴bn=log
(1-Sn+1)=log
(
)n+1=n+1.
∴
=
=
-
.
所以,Tn=
+
+…+
=(
-
)+(
-
)+…+(
-
)=
-
=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
则Sn-Sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
所以an=
| 1 |
| 3 |
∵a1=
| 2 |
| 3 |
| an |
| an-1 |
| 1 |
| 3 |
故数列{an}是以
| 2 |
| 3 |
| 1 |
| 3 |
故an=a1qn-1=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)∵Sn+
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=log
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| bnbn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
所以,Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |