题目内容
【题目】设
为正整数,记平面点集
.问:平面内最少要有多少条直线,它们的并集才能包含
,但不含点
?
【答案】至少需要
条直线.
【解析】
至少需要
条直线.
容易发现,
条直线满足要求.例如,直线
和
,易见,这
条直线的并集包含
但不含原点.
另外的例子是直线集
.
下面证明:
为最小可能数.
假设平面内
条直线的并集包含
,但不包含原点,设其方程为
.
考虑多项式
.
则其阶为
,且对任意
,有
,
.
记
,并记
为
被
除的余式.
由多项式
以
为
个零点,知
对所有
均成立.
注意到,
.
故
,且显然有
.
将多项式
表示成
的降幂形式
.
因为
,所以,
不为零多项式.
又当
时,
.
故
有
个根.
于是,
,这表明,
不为零多项式.
又对于
,当
时,均有
..
这表明,
至少有
个根.
而
,则
为零多项式.
故对于任意
,
.
于是,
至少有
个根.
而
不为零多项式,因此,
.
于是,
.
进而,
.
综上,至少要
条直线才能满足题设条件.
练习册系列答案
相关题目
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
)数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1.469 | 108.8 |
表中
,![]()
(1)根据散点图判断,
与
哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?给出判断即可,不必说明理由
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为
根据(2)的结果回答下列问题:
①年宣传费
时,年销售量及年利润的预报值是多少?
②年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据
,其回归线
的斜率和截距的最小二乘估计分别为:
,
.