题目内容
将函数y=f(x)的图象上各点的横坐标缩短为原来的| 1 |
| 2 |
| π |
| 12 |
(1)写出函数y=f(x)的图象的一条对称轴方程;
(2)若A为三角形的内角,且f(A)=
| 1 |
| 3 |
| A |
| 2 |
分析:(1)由题意可知将函数g(x)=sin2x的图象向右平移
个单位,再将横坐标伸长到原来的2倍即可得的到f(x)的图象可得f(x)=sin(x-
),令x-
=kπ+
可求答案.
(2)由f(A)=
可得,sin(A-
)=
=
结合已知0<A<π,且0<sin(A-
)=
=
<
可得0<A-
<
从而可求得cos(A-
)=
而g(
) =sinA=sin[(A-
)+
]=
cos(A-
)+
sin(A-
)代入可求答案.
| π |
| 12 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(2)由f(A)=
| 1 |
| 3 |
| π |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| π |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 2 |
从而可求得cos(A-
| π |
| 6 |
2
| ||
| 3 |
| A |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
解答:解:(1)由题意可知将函数g(x)=sin2x的图象向右平移
个单位,
再将横坐标伸长到原来的2倍即可得的到f(x)的图象,
∴f(x)=sin(x-
)
由x-
=kπ+
得x=kπ+
,k∈Z
∴x=kπ+
,k∈Z
(2)由f(A)=
可得,sin(A-
)=
=
∵0<A<π,且0<sin(A-
)=
=
<
0<A-
<
∴cos(A-
)=
g(
) =sinA=sin[(A-
)+
]=
cos(A-
)+
sin(A-
)=
.
| π |
| 12 |
再将横坐标伸长到原来的2倍即可得的到f(x)的图象,
∴f(x)=sin(x-
| π |
| 6 |
由x-
| π |
| 6 |
| π |
| 2 |
| 2π |
| 3 |
∴x=kπ+
| 2π |
| 3 |
(2)由f(A)=
| 1 |
| 3 |
| π |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
∵0<A<π,且0<sin(A-
| π |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
0<A-
| π |
| 6 |
| π |
| 2 |
∴cos(A-
| π |
| 6 |
2
| ||
| 3 |
g(
| A |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
2
| ||||
| 6 |
点评:本题考查了函数的平移及周期变换,三角函数的性质的应用,及利用拆角的技巧求解三角函数值等知识的综合运用,考查了推理运算的能力.属于中档试题.
练习册系列答案
相关题目