题目内容

已知函数f(x)=sinwx+coswx(w>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是( )
A.[kπ-,kπ+],k∈Z
B.[kπ+,kπ+],k∈Z
C.[kπ-,kπ+],k∈Z
D.[kπ+,kπ+],k∈Z
【答案】分析:先把函数化成y=Asin(ωx+φ)的形式,再根据三角函数单调区间的求法可得答案.
解答:解:f(x)=sinwx+coswx=2sin(wx+),(w>0).
∵f(x)的图象与直线y=2的两个相邻交点的距离等于π,恰好是f(x)的一个周期,
=π,w=2.f(x)=2sin(2x+).
故其单调增区间应满足2kπ-≤2x+≤2kπ+,k∈Z.kπ-≤x≤kπ+
故选C.
点评:本题主要考查三角函数单调区间的求法.求三角函数的周期、单调区间、最值都要把函数化成y=Asin(ωx+φ)的形式在进行解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网