题目内容
公差不为0的等差数列{an}的前n项和为Sn,若{
}也是等差数列,则{
}的前n项和为
.
| Sn |
| an |
| Sn |
| an |
| n2+3n |
| 4 |
| n2+3n |
| 4 |
分析:设出等差数列{an}的公差为d,首项为a1,然后根据{
}也是等差数列,代入可求出a1与d的关系,再根据等差数列前n项和公式进行求解;
| Sn |
| an |
解答:解:设等差数列{an},首项a1,公差为d,
∴a2=a1+d,a3=a1+2d,
∵{
}也是等差数列,
∴
+
=2×
,
∴
+
=2×
,
可得a1d=d2,d≠0,可得a1=d,
∴对于数列{
},
首项为
=1,公差为:
-
=
-1=
,
则{
}的前n项和为:Tn=n(
)+
=n+
=
(n=1,2,3…);
故答案为:
;
∴a2=a1+d,a3=a1+2d,
∵{
| Sn |
| an |
∴
| S1 |
| a1 |
| S3 |
| a3 |
| S2 |
| a2 |
∴
| a1 |
| a1 |
| a1+a1+d+a1+2d |
| a1+2d |
| a1+a1+d |
| a1+d |
可得a1d=d2,d≠0,可得a1=d,
∴对于数列{
| Sn |
| an |
首项为
| S1 |
| a1 |
| S2 |
| a2 |
| S1 |
| a1 |
| 3 |
| 2 |
| 1 |
| 2 |
则{
| Sn |
| an |
| S1 |
| a1 |
n(n-1)×
| ||
| 2 |
| n(n-1) |
| 4 |
| n2+3n |
| 4 |
故答案为:
| n2+3n |
| 4 |
点评:此题主要考查等差数列的性质及其应用是一道基础题,但也是一道好题,考查的知识点比较全面;
练习册系列答案
相关题目
已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
的值为( )
| S3-S2 |
| S5-S3 |
| A、2 | ||
| B、3 | ||
C、
| ||
| D、不存在 |