题目内容
若两个球的体积之比为
,则它们的表面积之比为( )
| A. | B. | C. | D. |
B.
解析试题分析:由两个球的体积之比为
及球的体积公式
、
知,
,再由其表面公式
、
得
,即为所求.
考点:球的体积与表面积.
练习册系列答案
相关题目
一平面截球O得到半径为
cm的圆面,球心到这个平面的距离是2cm,则球O的体积是( )
| A.12π cm3 | B.36π cm3 | C. | D. |
正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积是( )
| A. | B.16 | C.9 | D. |
正四棱锥S-ABCD的底面边长为4
,高SE=8,则过点A,B,C,D,S的球的半径为( )![]()
| A.3 | B.4 | C.5 | D.6 |
已知某几何体的三视图如图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )![]()
| A.24- | B.24- |
| C.24-π | D.24- |
[2013·广东高考]某三棱锥的三视图如图所示,则该三棱锥的体积是( )![]()
| A. | B. | C. | D.1 |