题目内容
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
.
(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
)=1,求数列{an}的通项公式;
(3)求证:(1-
)an+1<
<(1-
)an.
| x2+a |
| bx-c |
| 1 |
| 2 |
(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
| 1 |
| an |
(3)求证:(1-
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
分析:(1)如果设
=x,整理得:(1-b)x2+cx+a=0,由根与系数的关系得:
,解得
,代入f(x),并由f(-2)<-
,得c<3,且c,b∈N,f(x)=x有且只有两个不动点,得c、b的值,从而得f(x)解析式.
(2)由题意,知 4Sn•
=1,所以,2Sn=an-an2①;又an≠1,把n-1代替n得:2Sn-1=an-1-an-12,②;
①-②得:an,an-1的关系,从而得数列{an}是等差数列,通项公式为an=-n;
(3)由an=-n,知(1-
)an+1=(1+
)-(n+1)=(
)n+1,(1-
)an=(1+
)-n=(
)n,先由数学归纳法证明(
)n=
,(
)n+1<
<(
)n成立.所以,(1-
)an+1<
<(1-
)an.
| x2+a |
| bx-c |
|
|
| 1 |
| 2 |
(2)由题意,知 4Sn•
(
| ||
2(
|
①-②得:an,an-1的关系,从而得数列{an}是等差数列,通项公式为an=-n;
(3)由an=-n,知(1-
| 1 |
| an |
| 1 |
| n |
| n |
| n+1 |
| 1 |
| an |
| 1 |
| n |
| n |
| n+1 |
| n |
| n+1 |
| 1 |
| 2 |
| n |
| n+1 |
| 1 |
| e |
| n |
| n+1 |
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
解答:解:(1)设
=x得:(1-b)x2+cx+a=0,由根与系数的关系,得:
,
解得
,代入解析式 f(x)=
,由 f(-2)=
<-
,
得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,于是f(x)=
,(x≠1).
(2)由题设,知 4Sn•
=1,所以,2Sn=an-an2①;
且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②;
由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n;
(3)由an=-n,知(1-
)an+1=(1+
)-(n+1)=(
)n+1,
(1-
)an=(1+
)-n=(
)n,
当n=1时,(
)n+1=
,(
)n=
,(
)n+1<
<(
)n成立.
假设n=k时,(
)k+1<
<(
)k成立,
则当n=k+1时,(
)k+2<
<(
)k+1成立.
所以,(1-
)an+1<
<(1-
)an.
| x2+a |
| bx-c |
|
解得
|
| x2 | ||
(1+
|
| -2 |
| 1+c |
| 1 |
| 2 |
得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,于是f(x)=
| x2 |
| 2(x-1) |
(2)由题设,知 4Sn•
(
| ||
2(
|
且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②;
由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n;
(3)由an=-n,知(1-
| 1 |
| an |
| 1 |
| n |
| n |
| n+1 |
(1-
| 1 |
| an |
| 1 |
| n |
| n |
| n+1 |
当n=1时,(
| n |
| n+1 |
| 1 |
| 4 |
| n |
| n+1 |
| 1 |
| 2 |
| n |
| n+1 |
| 1 |
| e |
| n |
| n+1 |
假设n=k时,(
| k |
| k+1 |
| 1 |
| e |
| k |
| k+1 |
则当n=k+1时,(
| k+1 |
| k+2 |
| 1 |
| e |
| k+1 |
| k+2 |
所以,(1-
| 1 |
| an |
| 1 |
| e |
| 1 |
| an |
点评:本题考查了数列与函数的综合应用,也考查了不等式的应用问题,是较难的综合题;解题时要细心分析,精心作答,避免出错.
练习册系列答案
相关题目