题目内容
已知函数f(x)=2
cos2x-2sin2(x-
)+1
(Ⅰ)求满足f(x)=
的所有x的值;
(Ⅱ)若x∈[0,
],求f(x)的最值及对应的x的值.
| 3 |
| π |
| 4 |
(Ⅰ)求满足f(x)=
| 3 |
(Ⅱ)若x∈[0,
| π |
| 2 |
分析:(1)先化简函数解析式,再解方程即可
(2)利用整体代换思想,结合正弦函数点的性质,即可求解
(2)利用整体代换思想,结合正弦函数点的性质,即可求解
解答:解:f(x)=2
cos2x-2sin2(x-
) +1
=
(1+cos2x)+cos2(x-
)
=
+
cos2x+cos(2x-
)
=
+
cos2x+cos(
-2x )
=
+
cos2x+sin2x
=
+2sin(2x+
)
(1)∵f(x)=
∴
+2sin(2x+
) =
∴sin(2x+
) =0
∴2x+
=kπ (k∈Z)
∴x=
-
(k∈Z)
(2)∵x∈[0,
]
∴
≤2x+
≤
∴-
≤sin(2x+
) ≤1
∴当2x+
=
,即x=
时,f(x)取得最小值
+2×(-
) =0
当2x+
=
,即x=
时,f(x)取得最大值
+2×1=
+2
| 3 |
| π |
| 4 |
=
| 3 |
| π |
| 4 |
=
| 3 |
| 3 |
| π |
| 2 |
=
| 3 |
| 3 |
| π |
| 2 |
=
| 3 |
| 3 |
=
| 3 |
| π |
| 3 |
(1)∵f(x)=
| 3 |
∴
| 3 |
| π |
| 3 |
| 3 |
∴sin(2x+
| π |
| 3 |
∴2x+
| π |
| 3 |
∴x=
| kπ |
| 2 |
| π |
| 6 |
(2)∵x∈[0,
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴-
| ||
| 2 |
| π |
| 3 |
∴当2x+
| π |
| 3 |
| 4π |
| 3 |
| π |
| 2 |
| 3 |
| ||
| 2 |
当2x+
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 3 |
| 3 |
点评:本题考查正弦型函数的化简和性质,要注意和角公式、倍角公式、降幂公式的灵活应用,同时要注意整体代换思想的应用.属简单题
练习册系列答案
相关题目