题目内容
已知集合A={x|
∈N,x∈Z},用列举法表示集合A=
| 12 | 5-x |
{-7,-1,1,2,3,4}
{-7,-1,1,2,3,4}
.分析:依次取x∈Z,使5-x大于等于1且小于等于12逐一进行验证,保留使
为自然数的x.
| 12 |
| 5-x |
解答:解:当x=1时,
=
=2∈N,当x=2时,
=
=4∈N,当x=3时,
=
=6∈N
当x=4时,
=
=12∈N,当x=-1时,
=
=2∈N,当x=-7时,
=
=1∈N.
经验证当x取其它整数时,
不是自然数,所以满足条件的集合A={-7,-1,1,2,3,4}
故答案为{-7,-1,1,2,3,4}.
| 12 |
| 5-x |
| 12 |
| 5-1 |
| 12 |
| 5-x |
| 12 |
| 5-2 |
| 12 |
| 5-x |
| 12 |
| 5-3 |
当x=4时,
| 12 |
| 5-x |
| 12 |
| 5-4 |
| 12 |
| 5-x |
| 12 |
| 5-(-1) |
| 12 |
| 5-x |
| 12 |
| 5-(-7) |
经验证当x取其它整数时,
| 12 |
| 5-x |
故答案为{-7,-1,1,2,3,4}.
点评:本题考查了集合的表示法,解答的关键是对x的取舍,属基础题.
练习册系列答案
相关题目