题目内容

如果函数f(x)满足f(a+b)=f(a)•f(b)且f(1)=2则
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
+
f(2012)
f(2011)
=______.
∵函数f(x)满足f(a+b)=f(a)•f(b)
∴f(n+1)=f(n)f(1)
∵f(1)=2
f(n+1)
f(n)
=f(1)=2

f(2)
f(1)
=f(1)
f(3)
f(2)
=f(1)
f(4)
f(3)
=f(1)
f(2012)
f(2011)
=f(1)

f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
+
f(2012)
f(2011)
=2011f(1)=2011×2=4022
故答案为:4022
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网