题目内容
设等比数列{an}共有3n项,它的前2n项的和为100,后2n项之和为200,则该等比数列中间n项的和等于______.
S2n=
=100
S3n-Sn=
=200,
解得qn=2 S2n=100=
=(1+qn)Sn=3Sn
∴Sn=
中间n项为100-
=
故答案为:
.
| a1(1-q2n) |
| 1-q |
S3n-Sn=
| a1(qn-q3n) |
| 1-q |
解得qn=2 S2n=100=
| a1(1-q2n) |
| 1-q |
∴Sn=
| 100 |
| 3 |
| 100 |
| 3 |
| 200 |
| 3 |
故答案为:
| 200 |
| 3 |
练习册系列答案
相关题目