题目内容
6个不同的数排成一排,左边三个数中最大数大于右边三数中的最小数,这样的排列个数为( )
分析:不妨令这6个不同的数为1、2、3、4、5、6,则这六个数无条件全排列有
个,由题意可得右边三个数不能同时排4、5、6.而右边三个数同时排4、5、6有
•
个,相减即得所求.
| A | 6 6 |
| A | 3 3 |
| A | 3 3 |
解答:解:不妨令这6个不同的数为1、2、3、4、5、6,则这六个数无条件全排列有
=6×5×4×3×2×1=720(个),
要使左边3个数中最大的数大于右边3个数中的最小数,
则右边三个数不能同时排4、5、6,即同时左边不能同时排1、2、3.
右边三个数同时排4、5、6有
•
=36(个)
所以符合条件的有720-36=684(个),
故选B.
| A | 6 6 |
要使左边3个数中最大的数大于右边3个数中的最小数,
则右边三个数不能同时排4、5、6,即同时左边不能同时排1、2、3.
右边三个数同时排4、5、6有
| A | 3 3 |
| A | 3 3 |
所以符合条件的有720-36=684(个),
故选B.
点评:本题主要考查排列组合两个基本原理的应用,属于中档题.
练习册系列答案
相关题目