题目内容
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
(n∈N+),求数列{bn}的前n项和Tn并证明:
≤Tn<
.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
| 1 |
| Sn |
| 1 |
| 3 |
| 3 |
| 4 |
分析:(Ⅰ)利用等差数列的通项公式和前n项和公式即可得出;
(Ⅱ)由(Ⅰ)的结论,利用裂项求和即可得出Tn,再利用单调性即可证明结论.
(Ⅱ)由(Ⅰ)的结论,利用裂项求和即可得出Tn,再利用单调性即可证明结论.
解答:解:(Ⅰ)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,∴
,解得
,
∴an=3+2(n-1)=2n+1,Sn=
=n2+2n(n∈N*).
(Ⅱ)由(Ⅰ)可知:Sn=n(n+2),∴bn=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
=
-
(
+
),
∵0<
(
+
)≤
(
+
)=
,
∴
≤
-
(
+
)<
,
∴
≤Tn<
.
|
|
∴an=3+2(n-1)=2n+1,Sn=
| n(3+2n+1) |
| 2 |
(Ⅱ)由(Ⅰ)可知:Sn=n(n+2),∴bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∵0<
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 12 |
∴
| 1 |
| 3 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
∴
| 1 |
| 3 |
| 3 |
| 4 |
点评:熟练掌握等差数列的通项公式和前n项和公式、“裂项求和”方法、函数的单调性是解题的关键.
练习册系列答案
相关题目