题目内容
已知函数f(x)=log
(2-x)在其定义域上单调递减,则函数g(x)=loga(1-x2)的单调减区间是( )
| 1 |
| a |
| A.(-∞,0] | B.(-1,0) | C.[0,+∞) | D.[0,1) |
∵函数f(x)=log
(2-x)在其定义域上单调递减,
∴
>1,
∴0<a<1,
又∵g(x)=loga(1-x2)在定义域上单调递减,令h(x)=1-x2(-1<x<1),
∵h(x)=1-x2为开口向下的抛物线,在(-1,0)上单调递增,
∴
解得-1<x<0.
∴函数g(x)=loga(1-x2)的单调减区间是(-1,0).
故选B.
| 1 |
| a |
∴
| 1 |
| a |
∴0<a<1,
又∵g(x)=loga(1-x2)在定义域上单调递减,令h(x)=1-x2(-1<x<1),
∵h(x)=1-x2为开口向下的抛物线,在(-1,0)上单调递增,
∴
|
∴函数g(x)=loga(1-x2)的单调减区间是(-1,0).
故选B.
练习册系列答案
相关题目