题目内容
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(1)求证:数列{
}是等差数列;
(2)求数列{an}的通项公式.
(1)求证:数列{
| an |
| 2n |
(2)求数列{an}的通项公式.
证明:(1)∵an=2an-1+2n,两边同时除以2n,可得
=
+1
∴
-
=1,又
=
∴数列{
}是以
为首项,以1为公差的等差数列;
(2)由(1)可知
=
+n-1=n-
∴an=(n-
)•2n
| an |
| 2n |
| an-1 |
| 2n-1 |
∴
| an |
| 2n |
| an-1 |
| 2n-1 |
| a1 |
| 21 |
| 1 |
| 2 |
∴数列{
| an |
| 2n |
| 1 |
| 2 |
(2)由(1)可知
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=(n-
| 1 |
| 2 |
练习册系列答案
相关题目