题目内容
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;
(2)令bn=
| an | 2an |
分析:(1)根据首项为2,利用等差数列的通项公式化简a1+a2+a3=12,得到公差d的值,利用首项和公差写出等差数列的通项公式即可;(2)把数列{an}的通项公式代入bn=
中得到数列{bn}的通项公式,列举出前n项的和Sn①,两边都除以4得到②,然后①-②后利用等比数列的前n项和的公式即可化简得到Sn的通项公式.
| an |
| 2an |
解答:解:(1)由已知a1=2,a1+a2+a3=12,得a1+a1+d+a1+2d=12,即a1+d=4,
则a2=4,又a1=2,
∴d=2,an=2+2(n-1)=2n;
(2)由(1)知bn=
,设数列{bn}前n项和为Sn,则Sn=
+
+…+
①,
=
+
+
+…+
+
②,
又①-②错位相减得:
Sn=
+
-
+
(1+
+…+
)-
=
+
×
-
=
-
,则Sn=
×
-
×
=
-
所以数列{bn}前n项和Sn=
-
则a2=4,又a1=2,
∴d=2,an=2+2(n-1)=2n;
(2)由(1)知bn=
| 2n |
| 4n |
| 2 |
| 4 |
| 2×2 |
| 42 |
| 2n |
| 4n |
| Sn |
| 4 |
| 2 |
| 16 |
| 2×2 |
| 43 |
| 2×3 |
| 44 |
| 2(n-1) |
| 4n |
| 2n |
| 4n+1 |
又①-②错位相减得:
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 2 |
| 43 |
| 1 |
| 4 |
| 2 |
| 4n-3 |
| 2n |
| 4n+1 |
=
| 5 |
| 8 |
| 1 |
| 32 |
1-
| ||
1-
|
| 2n |
| 4n+1 |
| 2 |
| 3 |
| 3n+4 |
| 6×4n |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3n+4 |
| 6×4n |
| 8 |
| 9 |
| 6n+8 |
| 9×4n |
所以数列{bn}前n项和Sn=
| 8 |
| 9 |
| 6n+8 |
| 9×4n |
点评:此题考查学生灵活运用等差数列的通项公式及等比数列的前n项和的公式化简求值,会利用错位相减法求数列的和,是一道中档题.
练习册系列答案
相关题目