题目内容
已知函数f(x)=(x+1)lnx-x+1
(I)求曲线在(1,f(1))处的切线方程;
(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅲ)证明:(x-1)f(x)≥0.
(I)求曲线在(1,f(1))处的切线方程;
(Ⅱ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅲ)证明:(x-1)f(x)≥0.
(I)f′(x)=
+lnx-1=
+lnx
所以f′(1)=1,所以切线方程y=x-1
(Ⅱ)xf′(x)≤x2+ax+1?1+xlnx≤x2+ax+1,
即:xlnx≤x2+ax,x>0,则有lnx≤x+a,
即要使a≥lnx-x成立.
令g(x)=lnx-x,那么g′(X)=
-1=0?x=1,
可知当0<x<1时单调增,当x>1时单调减.
故g(x)=lnx-x 在x=1 处取最大值为gmax=-1,
那么要使得a≥lnx-x 成立,则有a≥-1.
(Ⅲ)由(Ⅱ)可得:lnx-x≤-1,即lnx-x+1≤0
当0<x<1 时,f(x)=xlnx+lnx-x+1<0,
当x≥1时,f(x)=xlnx+lnx-x+1
=lnx+(xlnx-x+1)
=lnx+x(lnx+
-1)
=lnx-x(ln
-
+1)
≥0.
∴f(x)=xlnx+lnx-x+1=lnx+(xlnx-x+1)≥0
综上所述,(x-1)f(x)≥0
| x+1 |
| x |
| 1 |
| x |
所以f′(1)=1,所以切线方程y=x-1
(Ⅱ)xf′(x)≤x2+ax+1?1+xlnx≤x2+ax+1,
即:xlnx≤x2+ax,x>0,则有lnx≤x+a,
即要使a≥lnx-x成立.
令g(x)=lnx-x,那么g′(X)=
| 1 |
| x |
可知当0<x<1时单调增,当x>1时单调减.
故g(x)=lnx-x 在x=1 处取最大值为gmax=-1,
那么要使得a≥lnx-x 成立,则有a≥-1.
(Ⅲ)由(Ⅱ)可得:lnx-x≤-1,即lnx-x+1≤0
当0<x<1 时,f(x)=xlnx+lnx-x+1<0,
当x≥1时,f(x)=xlnx+lnx-x+1
=lnx+(xlnx-x+1)
=lnx+x(lnx+
| 1 |
| x |
=lnx-x(ln
| 1 |
| x |
| 1 |
| x |
≥0.
∴f(x)=xlnx+lnx-x+1=lnx+(xlnx-x+1)≥0
综上所述,(x-1)f(x)≥0
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|