题目内容

已知二次函数y=ax2+2bx+c,其中a>b>c且a+b+c=0.
(1)求证:此函数的图象与x轴交于相异的两个点.
(2)设函数图象截x轴所得线段的长为l,求证:
3
<l<2
3
证明:(1)由a+b+c=0得b=-(a+c).
△=(2b)2-4ac=4(a+c)2-4ac
=4(a2+ac+c2)=4[(a+
c
2
2+
3
4
c2]>0.
故此函数图象与x轴交于相异的两点.
(2)∵a+b+c=0且a>b>c,
∴a>0,c<0.
由a>b得a>-(a+c),
c
a
>-2.
由b>c得-(a+c)>c,
c
a
<-
1
2

∴-2<
c
a
<-
1
2

l=|x1-x2|=
4(
c
a
+
1
2
)2+3

由二次函数的性质知l∈(
3
,2
3
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网