题目内容

【题目】已知各项均为整数的数列{an}中,a1=2,且对任意的n∈N* , 满足an+1﹣an<2n+ ﹣1,则a2017=

【答案】22017
【解析】解:由满足an+1﹣an<2n+

∴an+2﹣an+1<2n+1+ ,∴an+2﹣an<3×2n+1.

又an+2﹣an>3×2n﹣1.

∴an+2﹣an=3×2n

∴a2017=(a2017﹣a2015)+(a2015﹣a2013)+…+(a3﹣a1)+a1

=3×22015+3×22013+…+3×21+2

=3× +2

=22017

故答案为:22017

由满足an+1﹣an<2n+ ,可得 an+2﹣an+1<2n+1+ ,根据同向不等式可加的性质可得 an+2﹣an<3×2n+1,结合n+2﹣an>3×2n﹣1,不难得出an+2﹣an=3×2n,使用叠加可得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网