题目内容

已知定义在R上的奇函数f(x),设其导函数f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),则满足
1
3
(2x-1)f(2x-1)<f(3)
的实数x的取值范围是(  )
分析:由函数f(x)是定义在R上的奇函数且xf′(x)<f(-x)可得,[xf(x)]′<0,所以函数F(x)=xf(x)为(-∞,0]上的减函数,因为函数F(x)为偶函数,所以函数F(x)=xf(x)为[0,+∞)上的增函数.由
1
3
(2x-1)f(2x-1)<f(3)
得(2x-1)f(2x-1)<3f(3),所以F(2x-1)<F(3),所以|2x-1|<3,解得-1<x<2.
解答:解:∵函数f(x)是定义在R上的奇函数
∴f(-x)=-f(x)
∴由xf′(x)<f(-x)可得xf′(x)+f(x)<0,即[xf(x)]′<0
∵当x∈(-∞,0]时,恒有xf′(x)<f(-x),
∴当x∈(-∞,0]时,恒有[xf(x)]′<0
设F(x)=xf(x)
则函数F(x)=xf(x)为(-∞,0]上的减函数.
∵F(-x)=(-x)f(-x)=(-x)(-f(x))=xf(x)=F(x)
∴函数F(x)为R上的偶函数.
∴函数F(x)=xf(x)为[0,+∞)上的增函数.
1
3
(2x-1)f(2x-1)<f(3)

∴(2x-1)f(2x-1)<3f(3)
∴F(2x-1)<F(3)
∴|2x-1|<3
解得-1<x<2
故选A
点评:本题主要考查了利用导数研究函数的单调性、解不等式,体现了化归与转化的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网