题目内容
(1)计算21+
log25+lg25+lg2lg50
(2)化简
•
•(xy)-1.
| 1 |
| 2 |
(2)化简
| 3 | xy2•
| ||
| xy |
(1)原式=2×2
log25+lg25+lg2(1+lg5)
=2
+lg5(lg2+lg5)+lg2
=2
+1
(2)原式=[xy2(xy-1)
]
•(xy)
-1
=x
y
|x|
|y|-
|x |-
|y|-
=x
|x| -
=
.
| 1 |
| 2 |
=2
| 5 |
=2
| 5 |
(2)原式=[xy2(xy-1)
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
=x
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
=x
| 1 |
| 3 |
| 1 |
| 3 |
|
练习册系列答案
相关题目