题目内容

设函数fn(x)=xn+x﹣1,其中n∈N*,且n≥2,给出下列三个结论:

①函数f3(x)在区间(,1)内不存在零点;

②函数f4(x)在区间(,1)内存在唯一零点;

③设xn(n>4)为函数fn(x)在区间(,1)内的零点,则xn<xn+1

其中所有正确结论的序号为  

考点:

命题的真假判断与应用;函数的零点.

专题:

函数的性质及应用.

分析:

①确定函数的单调性,利用零点存在定理,进行验证;

②确定函数的单调性,利用零点存在定理,进行验证;

③函数在(,1)上是单调增函数,fn+1(x)<fn(x),即可得到结论.

解答:

解:①f3(x)=x3+x﹣1,∵f3′(x)=3x2+1>0,∴函数在R上是单调增函数,∵f3)=﹣<0,f3(1)=1>0,∴函数f3(x)在区间(,1)内存在零点,即①不正确;

②f4(x)=x4+x﹣1,∵f4′(x)=4x3+1,∵x∈(,1),∴f4′(x)>0,∴函数在(,1)上是单调增函数,∵f4)=﹣<0,f4(1)=1>0,∴函数f4(x)在区间(,1)内存在零点,即②正确;

③fn(x)=xn+x﹣1,∵fn′(x)=nxn1+1,∵x∈(,1),∴fn′(x)>0,∴函数在(,1)上是单调增函数,∵fn+1(x)﹣fn(x)=xn(x﹣1)<0,∴函数在(,1)上fn+1(x)<fn(x),∵xn(n>4)为函数fn(x)在区间(,1)内的零点,∴xn<xn+1,即③正确

故答案为:②③

点评:

本题考查的知识点是零点存在定理,导数法判断函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目