题目内容
【题目】已知函数
.
(1)若关于
的方程
有两个不同的实数根,求证:
;
(2)若存在
使得
成立,求实数
的取值范围.(其中
为自然对数的底数,
)
【答案】(1)见解析; (2)
.
【解析】
(1)设
,将“方程
有两个不同的实数根”转化为“函数
和
有两个不同的交点”,进而转化为求
的最值问题,得出m的取值范围,问题即可解决。(2)首先“存在
使得
成立”的问题转化为“存在
使得
成立”,从而转化为求
的最大值问题,利用导数研究其单调性并求其最值,即可解决问题。
(1)若方程
有两个不同的实数根,即
有两个不同的实数根,
令
,即函数
和
有两个不同的交点,
而
,
令
,解得:
,令
,解得
,
故
在
上递减,在
上递増,
故
,故
,
故
.
(2)若存在
使得
成立,
即存在
使得
成立,
令
,则
,
易得
,
令
,解得:
,令
,解得
,
故
在
递减,在
递增,
故
的最大值是
或
,
而
,
故
.
练习册系列答案
相关题目