题目内容

10.已知曲线C的方程为$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐 标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)已知M是曲线C上任意一点,求点M到直线l距离的最小值.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ可得直线l的直角坐标方程;
(Ⅱ)设$M(2cosθ,\sqrt{5}sinθ)$,M到l的距离为d,运用点到直线的距离公式,结合两角差的余弦公式,以及余弦函数的值域,即可得到最小值.

解答 解:(Ⅰ)由$ρcos(θ-\frac{π}{4})=2\sqrt{2}$,x=ρcosθ,y=ρsinθ,
得x+y-4=0,
∴直线l的直角坐标方程为x+y-4=0.
(Ⅱ)设$M(2cosθ,\sqrt{5}sinθ)$,M到l的距离为d,
则d=$\frac{|2cosθ+\sqrt{5}sinθ-4|}{\sqrt{2}}$=$\frac{4-3(\frac{2}{3}cosθ+\frac{\sqrt{5}}{3}sinθ)}{\sqrt{2}}$=$\frac{4-3cos(θ-φ)}{\sqrt{2}}$,
其中$cosφ=\frac{2}{3},sinφ=\frac{{\sqrt{5}}}{3}$,
当cos(θ-φ)=1时,d有最小值$\frac{{\sqrt{2}}}{2}$,
∴M到直线l的距离的最小值为$\frac{{\sqrt{2}}}{2}$.

点评 本题考查参数方程、极坐标方程和普通方程的互化,考查点到直线的距离公式的运用,同时考查余弦函数的值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网