题目内容

已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N+
(Ⅰ)求的q值;
(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{bn}的前n和Tn
分析:(Ⅰ)先令n=1得到a1,然后当n≥2时,利用an=Sn-sn-1得到an的通项公式,因为a1符合n≥2时,an的形式,把n=1代入求出q即可;
(Ⅱ)a1与a5的等差中项为18得a3=
a1+a5
2
,求出a3,代入通项公式求出p的值,得到an,把an代入到an=2log2bn,得到bn的通项公式,发现{bn}是首项为2,公比为16的等比数列,利用等比数列的求和公式求出即可.
解答:解:(Ⅰ)当n=1时,a1=S1=p-2+q
当n≥2时,an=Sn-Sn-1=pn2-2n+q-p(n-1)2+2(n-1)-q=2pn-p-2
∵{an}是等差数列,a1符合n≥2时,an的形式,
∴p-2+q=2p-p-2,
∴q=0
(Ⅱ)∵a3=
a1+a5
2
,由题意得a3=18
又a3=6p-p-2,∴6p-p-2=18,解得p=4
∴an=8n-6
由an=2log2bn,得bn=24n-3
b1=2,
bn+1
bn
=
24(n+1)-3
24n-3
=24=16
,即{bn}是首项为2,公比为16的等比数列
∴数列{bn}的前n项和Tn=
2(1-16n)
1-16
=
2
15
(16n-1)
点评:考查学生会利用等差数列的前n+1项的和与前n项的和相减得到等差数列的通项公式,以及会求等比数列的前n项的和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网