题目内容
已知x满足2(log
x)2+7log
x+3≤0,求y=(log2
)(log2
)的最大值与最小值及相应的x的值.
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 4 |
分析:由条件求得
≤log2x≤3,化简函数y的解析式为 (log2x-
)2-
,由此可得y最大值与最小值及相应的x的值.
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
解答:已知x满足2(log
x)2+7log
x+3≤0,求y=(log2
)(log2
)的最大值与最小值及相应的x的值.
解:由题意 2(log
x)2+7log
x+3≤0,解得 -3≤log
x≤-
,
∴
≤log2x≤3.
又∵y=(log2
)(log2
)=(log2x-1)(log2x-2)=(log2x)2-3log2x+2=(log2x-
)2-
,
∴当log2x=
时,ymin=-
,当log2x=3时,ymax=2,
即当 x=2
时,ymin=-
;当x=8时,ymax=2.
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 4 |
解:由题意 2(log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
又∵y=(log2
| x |
| 2 |
| x |
| 4 |
| 3 |
| 2 |
| 1 |
| 4 |
∴当log2x=
| 3 |
| 2 |
| 1 |
| 4 |
即当 x=2
| 2 |
| 1 |
| 4 |
点评:本题主要考查二元一次不等式、对数不等式的解法,属于中档题.
练习册系列答案
相关题目