题目内容
已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有( )
| A.f(sinα-sinβ)≥f(cosα-cosβ) |
| B.f(sinα-cosβ)>f(cosα-sinβ) |
| C.f(sinα-cosβ)≥f(cosα-sinβ) |
| D.f(sinα-cosβ)<f(cosα-sinβ) |
∵奇函数y=f(x)在[-1,0]上为单调递减函数
∴f(x)在[0,1]上为单调递减函数,∴f(x)在[-1,1]上为单调递减函数,
又α、β为锐角三角形的两内角
∴α+β>
∴
>α>
-β>0
∴1>sinα>sin(
-β)=cosβ>0
∴-1<-sinα<-cosβ<0
∴-1<cosα-sinβ<sinα-cosβ<1
∴f(sinα-cosβ)<f(cosα-sinβ)
故选D.
∴f(x)在[0,1]上为单调递减函数,∴f(x)在[-1,1]上为单调递减函数,
又α、β为锐角三角形的两内角
∴α+β>
| π |
| 2 |
∴
| π |
| 2 |
| π |
| 2 |
∴1>sinα>sin(
| π |
| 2 |
∴-1<-sinα<-cosβ<0
∴-1<cosα-sinβ<sinα-cosβ<1
∴f(sinα-cosβ)<f(cosα-sinβ)
故选D.
练习册系列答案
相关题目
已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有( )
| A、f(sinα-sinβ)≥f(cosα-cosβ) | B、f(sinα-cosβ)>f(cosα-sinβ) | C、f(sinα-cosβ)≥f(cosα-sinβ) | D、f(sinα-cosβ)<f(cosα-sinβ) |