题目内容
已知函数f(x)=sin2ωx+
sinωxsin(ωx+
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,
]上的取值范围.
| 3 |
| π |
| 2 |
(1)求ω的值;
(2)求函数f(x)在区间[0,
| π |
| 3 |
(1)∵f(x)=sin2ωx+
sinωxsin(ωx+
)
=
+
sinwxcoswx=
+
sin2wx
=sin(2wx-
)+
∵T=
=π∴w=1
(2)∵w=1∴f(x)=sin(2x-
)+
∵x∈[0,
]∴2x-
∈[-
,
]
∴sin(2x-
)∈[-
,1]∴f(x)∈[0,
]
| 3 |
| π |
| 2 |
=
| 1-cos2wx |
| 2 |
| 3 |
| 1-cos2wx |
| 2 |
| ||
| 2 |
=sin(2wx-
| π |
| 6 |
| 1 |
| 2 |
∵T=
| 2π |
| 2w |
(2)∵w=1∴f(x)=sin(2x-
| π |
| 6 |
| 1 |
| 2 |
∵x∈[0,
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
∴sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目