题目内容
已知各项均为正数的数列{an}的前n项和为Sn,且Sn、an、
成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若
=2-bn,设Cn=
,求数列{Cn}的前项和Tn.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若
| a | 2n |
| bn |
| an |
(Ⅰ) 由题意知2an=Sn+
,an>0
当n=1时,2a1=a1+
∴a1=
;
当n≥2时,Sn=2an-
,Sn-1=2an-1-
两式相减得an=2an-2an-1(n≥2),整理得:
=2(n≥2)
∴数列{an}是
为首项,2为公比的等比数列.an=a1•2n-1=
×2n-1=2n-2
(Ⅱ)
=2-bn=22n-4,
∴bn=4-2n
Cn=
=
=
Tn=
+
+
+…+
+
①
Tn=
+
+…+
+
②
①-②得
Tn=4-8(
+
+…+
)-
∴Tn=
| 1 |
| 2 |
当n=1时,2a1=a1+
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,Sn=2an-
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得an=2an-2an-1(n≥2),整理得:
| an |
| an-1 |
∴数列{an}是
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)
| a | 2n |
∴bn=4-2n
Cn=
| ba |
| aa |
| 4-2n |
| 2n-2 |
| 16-8n |
| 2n |
| 8 |
| 2 |
| 0 |
| 22 |
| -8 |
| 23 |
| 24-8n |
| 2n-1 |
| 16-8n |
| 2n |
| 1 |
| 2 |
| 8 |
| 22 |
| 0 |
| 23 |
| 24-8n |
| 2n |
| 16-8n |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 16-8n |
| 2n+1 |
|
∴Tn=
| 8n |
| 2n |
练习册系列答案
相关题目