ÌâÄ¿ÄÚÈÝ
14£®µÂ¹úÖøÃûÊýѧ¼ÒµÒÀû¿ËÀ×ÔÚÊýѧÁìÓò³É¾ÍÏÔÖø£¬ÒÔÆäÃûÃüÃûµÄº¯Êýf£¨x£©=$\left\{\begin{array}{l}{1£¬x¡ÊQ}\\{0£¬x¡Ê{∁}_{R}Q}\end{array}\right.$±»³ÆÎªµÒÀû¿ËÀ׺¯Êý£¬ÆäÖÐRΪʵÊý¼¯£¬QΪÓÐÀíÊý¼¯£¬Ôò¹ØÓÚº¯Êýf£¨x£©ÓÐÈçÏÂËĸöÃüÌ⣺¢Ùf£¨f£¨x£©£©=1£»¢Úº¯Êýf£¨x£©ÊÇżº¯Êý£»¢ÛÈÎȡһ¸ö²»ÎªÁãµÄÓÐÀíÊýT£¬f£¨x+T£©=f£¨x£©¶ÔÈÎÒâµÄx=Rºã³ÉÁ¢£»¢Ü´æÔÚÈý¸öµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬Ê¹µÃ¡÷ABCΪµÈ±ßÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâµÄ¸öÊýÓУ¨¡¡¡¡£©| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
·ÖÎö ¢Ù¸ù¾Ýº¯ÊýµÄ¶ÔÓ¦·¨Ôò£¬¿ÉµÃ²»¹ÜxÊÇÓÐÀíÊý»¹ÊÇÎÞÀíÊý£¬¾ùÓÐf£¨f£¨x£©£©=1£»¢Ú¸ù¾Ýº¯ÊýÆæÅ¼ÐԵ͍Ò壬¿ÉµÃf£¨x£©ÊÇżº¯Êý£»¢Û¸ù¾Ýº¯ÊýµÄ±í´ïʽ£¬½áºÏÓÐÀíÊýºÍÎÞÀíÊýµÄÐÔÖÊ£»¢ÜÈ¡x1=-$\frac{\sqrt{3}}{3}$£¬x2=0£¬x3=$\frac{\sqrt{3}}{3}$£¬¿ÉµÃA£¨$\frac{\sqrt{3}}{3}$£¬0£©£¬B£¨0£¬1£©£¬C£¨-$\frac{\sqrt{3}}{3}$£¬0£©£¬ÈýµãÇ¡ºÃ¹¹³ÉµÈ±ßÈý½ÇÐΣ®
½â´ð ½â£º¢Ù¡ßµ±xΪÓÐÀíÊýʱ£¬f£¨x£©=1£»µ±xΪÎÞÀíÊýʱ£¬f£¨x£©=0
¡àµ±xΪÓÐÀíÊýʱ£¬f£¨f£¨x£©£©=f£¨1£©=1£»
µ±xΪÎÞÀíÊýʱ£¬f£¨f£¨x£©£©=f£¨0£©=1
¼´²»¹ÜxÊÇÓÐÀíÊý»¹ÊÇÎÞÀíÊý£¬¾ùÓÐf£¨f£¨x£©£©=1£¬¹Ê¢ÙÕýÈ·£»
¢Ú¡ßÓÐÀíÊýµÄÏà·´Êý»¹ÊÇÓÐÀíÊý£¬ÎÞÀíÊýµÄÏà·´Êý»¹ÊÇÎÞÀíÊý£¬
¡à¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨-x£©=f£¨x£©£¬¹Ê¢ÚÕýÈ·£»
¢ÛÈôxÊÇÓÐÀíÊý£¬Ôòx+TÒ²ÊÇÓÐÀíÊý£» ÈôxÊÇÎÞÀíÊý£¬Ôòx+TÒ²ÊÇÎÞÀíÊý
¡à¸ù¾Ýº¯ÊýµÄ±í´ïʽ£¬ÈÎȡһ¸ö²»ÎªÁãµÄÓÐÀíÊýT£¬f£¨x+T£©=f£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£¬¹Ê¢ÛÕýÈ·£»
¢ÜÈ¡x1=-$\frac{\sqrt{3}}{3}$£¬x2=0£¬x3=$\frac{\sqrt{3}}{3}$£¬¿ÉµÃf£¨x1£©=0£¬f£¨x2£©=1£¬f£¨x3£©=0
¡àA£¨$\frac{\sqrt{3}}{3}$£¬0£©£¬B£¨0£¬1£©£¬C£¨-$\frac{\sqrt{3}}{3}$£¬0£©£¬Ç¡ºÃ¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ìâ¸ø³öÌØÊ⺯Êý±í´ïʽ£¬Çóº¯ÊýµÄÖµ²¢ÌÖÂÛËüµÄÆæÅ¼ÐÔ£¬×ÅÖØ¿¼²éÁËÓÐÀíÊý¡¢ÎÞÀíÊýµÄÐÔÖʺͺ¯ÊýµÄÆæÅ¼ÐÔµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
| A£® | 150¡ã | B£® | 135¡ã | C£® | 120¡ã | D£® | 60¡ã |
| A£® | -1 | B£® | 0 | C£® | $\frac{1}{2}$ | D£® | 1 |
| A£® | 1 | B£® | $\sqrt{2}-1$ | C£® | $\sqrt{2}$ | D£® | 2 |
| A£® | -1+i | B£® | -1-i | C£® | 1-i | D£® | 1+i |
| A£® | 30¡ã | B£® | 45¡ã | C£® | 60¡ã | D£® | 90¡ã |