题目内容

已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-26.7-29.6
那么函数f(x)在区间[1,6]上的零点至少有( )
A.2个
B.3个
C.4个
D.5个
【答案】分析:由于f(2)f(3)<0,故连续函数f(x)在(2,3)上有一个零点,同理可得f(x)在(3,4)上有一个零点,在(4,5)上有一个零点,由此得出结论.
解答:解:由于f(2)f(3)<0,故连续函数f(x)在(2,3)上有一个零点.
由于f(3)f(4)<0,故连续函数f(x)在(3,4)上有一个零点.
由于f(4)f(5)<0,故连续函数f(x)在(4,5)上有一个零点.
综上可得函数至少有3个零点,
故选B
点评:本题考查函数零点的定义和判定定理的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网