题目内容
设{an}是由正数组成的等比数列,Sn是其前n项和,证明:
>log0. 5Sn+1.
| log0. 5Sn+log0. 5Sn+2 |
| 2 |
证明:设{an}的公比为q,由题设知a1>0,q>0,
(1)当q=1时,Sn=na1,从而
Sn•Sn+2-Sn+12=na1(n+2)a1-(n+1)2a12=-a12<0.
(2)当q≠1时,Sn=
,从而
Sn•Sn+2-Sn+12=
-
=-a12qn<0.
由(1)和(2)得Sn•Sn+2<Sn+12.
根据对数函数的单调性,得log0.5(Sn•Sn+2)>log0.5Sn+12,
即
>log0. 5Sn+1.
(1)当q=1时,Sn=na1,从而
Sn•Sn+2-Sn+12=na1(n+2)a1-(n+1)2a12=-a12<0.
(2)当q≠1时,Sn=
| a1(1-qn) |
| 1-q |
Sn•Sn+2-Sn+12=
| ||
| (1-q)2 |
| ||
| (1-q)2 |
由(1)和(2)得Sn•Sn+2<Sn+12.
根据对数函数的单调性,得log0.5(Sn•Sn+2)>log0.5Sn+12,
即
| log0. 5Sn+log0. 5Sn+2 |
| 2 |
练习册系列答案
相关题目