题目内容
在△ABC中,若b=4,cosB=-
,sinA=
,则a=______,c=______.
| 1 |
| 4 |
| ||
| 8 |
∵在△ABC中,b=4,cosB=-
,sinA=
,∴sinB=
且B为钝角,
∴cosA=
,sinC=sin(A+B)=sinAcosB+cosAsinB=
×(-
)+
×
=
.
由正弦定理可得
=
=
,即
=
=
,∴a=2,c=3,
故答案为 2,3.
| 1 |
| 4 |
| ||
| 8 |
| ||
| 4 |
∴cosA=
| 7 |
| 8 |
| ||
| 8 |
| 1 |
| 4 |
| 7 |
| 8 |
| ||
| 4 |
3
| ||
| 16 |
由正弦定理可得
| 4 |
| sinB |
| a |
| sinA |
| c |
| sinC |
| 4 | ||||
|
| a | ||||
|
| c | ||||
|
故答案为 2,3.
练习册系列答案
相关题目