题目内容
定义在[0,1]上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),且当 0≤x1<x2≤1时,f(x1)≤f(x2).则f(
)等于( )
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2013 |
分析:能灵活运用题目中的条件f(x)+f(1-x)=1,f(
)=
f(x)解决问题.理解当0≤x1<x2≤1时,有f(x1)≤f(x2)的含义并能对抽象函数的解题思路了如指掌.
| x |
| 5 |
| 1 |
| 2 |
解答:解:由f(x)+f(1-x)=1,f(0)=0得:f(1)=1,
令x=
得:f(
)+f(1-
)=1,解得f(
)=
,
由f(
)=
f(x)得:f(
)=
f(1)=
,
∵当0≤x1<x2≤1时,有f(x1)≤f(x2),
∴当
≤x≤
时,f(x)=
;
当
≤x≤
时,
≤1-x≤
,∴f(1-x)=
,∴f(x)=1-f(1-x)=
,
又由f(
)=
f(x)得:f(
)=
f(
)=
f(
)=
f(
)=
f(
),
∵
<
<
,∴f(
)=
,
∴f(
)=
×
=
,
故选C
令x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由f(
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
∵当0≤x1<x2≤1时,有f(x1)≤f(x2),
∴当
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
当
| 1 |
| 2 |
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
又由f(
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2013 |
| 1 |
| 2 |
| 5 |
| 2103 |
| 1 |
| 4 |
| 25 |
| 2013 |
| 1 |
| 8 |
| 125 |
| 2013 |
| 1 |
| 16 |
| 625 |
| 2013 |
∵
| 1 |
| 5 |
| 625 |
| 2013 |
| 1 |
| 2 |
| 625 |
| 2013 |
| 1 |
| 2 |
∴f(
| 1 |
| 2013 |
| 1 |
| 16 |
| 1 |
| 2 |
| 1 |
| 32 |
故选C
点评:此题考查了抽象函数与单调性问题.在解答的过程当中充分体现了特值的思想、函数的思想以及问题转化的思想.值得同学们体会反思
练习册系列答案
相关题目