题目内容

已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an),…(n∈N*)是首项为m2,公比为m的等比数列.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若bn=an•f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn
分析:(I)根据等比数列的通项公式,可得f(an)=m2•mn-1=mn+1,从而可得an=n+1,进而可证数列{an}是以2为首项,1为公差的等差数列;
(II)当m=2时,bn=(n+1)•2n+1,利用错位相减法可求数列的和;
解答:证明:(I)由题意f(an)=m2•mn-1=mn+1
man=mn+1
∴an=n+1,(2分)
∴an+1-an=1,
∴数列{an}是以2为首项,1为公差的等差数列.
解:(II)由题意bn=an•f(an)=(n+1)•mn+1
当m=2时,bn=(n+1)•2n+1
∴Sn=2•22+3•23+4•24+…+(n+1)•2n+1 ①
①式两端同乘以2,得
2Sn=2•23+3•24+4•25+…+n•2n+1+(n+1)•2n+2 ②
②-①并整理,得
Sn=-2•22-23-24-25-…-2n+1+(n+1)•2n+2
=-22-(22+23+24+…+2n+1)+(n+1)•2n+2
=-22-
2 2(1-2n)
1-2
+(n+1)•2n+2
=-22+22(1-2n)+(n+1)•2n+2
=2n+2•n.
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查恒成立问题,确定数列的通项,掌握求和公式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网