题目内容
已知数列{an}满足a1=
,an=
(n≥2,n∈N*)
(1)求a2,a3,a4
(2)求证{
+(-1)n}为等比数列,并求出数列{an}的通项公式;
(3)设cn=ansin
,数列{cn}的前n项和为{Tn}.求证:对任意的n∈N*,Tn<
.
| 1 |
| 4 |
| an-1 |
| (-1)nan-1-2 |
(1)求a2,a3,a4
(2)求证{
| 1 |
| an |
(3)设cn=ansin
| (2n-1)π |
| 2 |
| 4 |
| 7 |
分析:(1)利用递推式和已知即可得出;
(2)对an=
两边取倒数,再变形和利用等比数列的定义和通项公式即可得出;
(3)由sin
=(-1)n-1,可得cn=(-1)n-1•
=
<
(n≥3).利用放缩法和等比数列的前n项和公式即可得出.
(2)对an=
| an-1 |
| (-1)nan-1-2 |
(3)由sin
| (2n-1)π |
| 2 |
| (-1)n-1 |
| 3•2n-1+1 |
| 1 |
| 3•2n-1+1 |
| 1 |
| 3×2n-1 |
解答:解:(1)∵数列{an}满足a1=
,an=
(n≥2,n∈N*),
∴a2=
=
=-
;
a3=
=
;
a4=
=-
.
(2)∵
=(-1)n-
,∴
+(-1)n=(-2)[
+(-1)n-1],
∵
+(-1)=3,
∴{
+(-1)n}是首项为3,公比为-2的等比数列,
∴
+(-1)n=3×(-2)n-1,解得an=
.
(3)∵sin
=(-1)n-1,
∴cn=(-1)n-1•
=
.
当n≥3Tn=
+
+
+…+
<
+
+
+
+…+
=
+
=
+
[1-(
)n-2]<
+
=
<
=
时,
又
>T1>T2>T3.
∴对任意的n∈N*,Tn<
.
| 1 |
| 4 |
| an-1 |
| (-1)nan-1-2 |
∴a2=
| a1 |
| 1×a1-2 |
| ||
|
| 1 |
| 7 |
a3=
| a2 |
| -a2-2 |
| 1 |
| 13 |
a4=
| a3 |
| a3-2 |
| 1 |
| 25 |
(2)∵
| 1 |
| an |
| 2 |
| an-1 |
| 1 |
| an |
| 1 |
| an-1 |
∵
| 1 |
| a1 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
| (-1)n-1 |
| 3×2n-1+1 |
(3)∵sin
| (2n-1)π |
| 2 |
∴cn=(-1)n-1•
| (-1)n-1 |
| 3•2n-1+1 |
| 1 |
| 3•2n-1+1 |
当n≥3Tn=
| 1 |
| 3+1 |
| 1 |
| 3×2+1 |
| 1 |
| 3×22+1 |
| 1 |
| 3×2n-1+1 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3•22 |
| 1 |
| 3•23 |
| 1 |
| 3•2n-1 |
| 11 |
| 28 |
| ||||
1-
|
=
| 11 |
| 28 |
| 1 |
| 6 |
| 1 |
| 2 |
| 11 |
| 28 |
| 1 |
| 6 |
| 47 |
| 84 |
| 48 |
| 84 |
| 4 |
| 7 |
又
| 1 |
| 4 |
∴对任意的n∈N*,Tn<
| 4 |
| 7 |
点评:熟练掌握递推式的意义、取倒数法、再变形和利用等比数列的定义和通项公式、放缩法和等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目