题目内容
设函数f(x)是定义在x∈[-1,1]上的偶函数,函数g(x)的图象与f(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
①求f(x)的解析式;
②是否存在正整数a,使f(x)的最大值为12?若存在求出a的值,若不存在说明理由.
①求f(x)的解析式;
②是否存在正整数a,使f(x)的最大值为12?若存在求出a的值,若不存在说明理由.
(1)设f(x)的图象上任意点(x,f(x)),
它关于直线x=1的对称点(2-x,f(x))在g(x)的图象上,
当x∈[-1,0]时,2-x∈[2,3],且g(x)=2a(x-2)-4(x-2)3,
∴f(x)=g(2-x)=-2ax+4x3,
当x∈(0,1]时,-x∈[-1,0),∴f(-x)=2ax-4x3,
又∵f(x)是定义在x∈[-1,1]上的偶函数,
∴f(x)=2ax-4x3,
则f(x)=
,
(2)假设存在正整数a,使函数f(x)的最大值为12,
又f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈(0,1]的最大值
令f′(x)=2a-12x2=0,得x=
(a>0),
若
时:
单调递增,
单调递减,
则
故此时不存在符合题意的a,
若
时,f′(x)>0在(0,1]上恒成立,
则f(x)在(0,1]上单调递增,
∴
,
令2a-4=12,得a=8,
综上,存在a=8满足题意.
它关于直线x=1的对称点(2-x,f(x))在g(x)的图象上,
当x∈[-1,0]时,2-x∈[2,3],且g(x)=2a(x-2)-4(x-2)3,
∴f(x)=g(2-x)=-2ax+4x3,
当x∈(0,1]时,-x∈[-1,0),∴f(-x)=2ax-4x3,
又∵f(x)是定义在x∈[-1,1]上的偶函数,
∴f(x)=2ax-4x3,
则f(x)=
|
(2)假设存在正整数a,使函数f(x)的最大值为12,
又f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈(0,1]的最大值
令f′(x)=2a-12x2=0,得x=
|
若
|
|
|
则
|
故此时不存在符合题意的a,
若
|
则f(x)在(0,1]上单调递增,
∴
|
令2a-4=12,得a=8,
综上,存在a=8满足题意.
练习册系列答案
相关题目