题目内容

已知函数f(x)=
ax+1,x≤0
log2x,x>0
,则下列关于函数y=f(f(x))+1的零点个数的判断正确的是(  )
A.当a>0时,有4个零点;当a<0时,有1个零点
B.当a>0时,有3个零点;当a<0时,有2个零点
C.无论a为何值,均有2个零点
D.无论a为何值,均有4个零点
分四种情况讨论.
(1)x>1时,log2x>0,∴y=f(f(x))+1=log2(log2x)+1,此时的零点为
2

(2)0<x<1时,log2x<0,∴y=f(f(x))+1=alog2x+1,则a>0时,有一个零点,a<0时,没有零点,
(3)若x<0,ax+1≤0时,y=f(f(x))+1=a2x+a+1,则a>0时,有一个零点,a<0时,没有零点,
(4)若x<0,ax+1>0时,y=f(f(x))+1=log2(ax+1)+1,则a>0时,有一个零点,a<0时,没有零点,
综上可知,当a>0时,有4个零点;当a<0时,有1个零点
故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网